Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 539
Filtrar
1.
Am J Vet Res ; : 1-6, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38593824

RESUMEN

OBJECTIVE: To evaluate if a difference in synovial amikacin concentrations exists in the radiocarpal joint (RCJ) following different durations of instillation of an IV regional limb perfusion (IVRLP) perfusate. ANIMALS: 7 healthy horses. METHODS: Horses received 2 IVRLPs with 2 g amikacin diluted to 60 mL with 0.9% NaCl via the cephalic vein in a crossover study design with a wash-out period between procedures. Instillation of the perfusate was administered over a 1-minute (technique 1) and 5-minute (technique 5) period. Concentrations of amikacin within the RCJ were measured at time (T) 5, 10, 15, 20, 25, and 30 minutes after instillation of the perfusate. Systemic concentrations of amikacin were measured at T0, 5, 10, 15, 20, 25, 29 minutes, and 1 minute after tourniquet removal (T31). Amikacin concentrations were determined by fluorescence polarization immunoassay. RESULTS: The median maximum concentration (CMAX) of amikacin within the RCJ for technique 1 was 338.4 µg/mL (range, 60 to 4,925 µg/mL), while the median CMAX for technique 5 was higher at 694.8 µg/mL (range, 169.2 to 3,410 µg/mL; P = .398). There was a higher amikacin blood concentration over time for technique 1 compared to technique 5 (P = .004). CLINICAL RELEVANCE: Administration of perfusate at different rates did not significantly affect synovial concentration of amikacin within the RCJ when performing IVRLP. However, increased systemic leakage was noted when the perfusate was administered over 1 minute, which might affect synovial concentrations in a larger group of horses.

2.
Respir Investig ; 62(4): 513-516, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38615375

RESUMEN

Amikacin liposome inhalation suspension (ALIS) is known to cause drug-related pneumonitis, which has been described as "hypersensitivity pneumonitis (HP)". However, its clinical and pathological characteristics have never been reported. We retrospectively evaluated 18 patients treated with ALIS. Three (16.7%) patients developed HP-pattern pneumonitis on high-resolution computed tomography. Serum eosinophil counts were elevated up to above 1000/µL in these three patients, which decreased with ALIS discontinuation only. Of note, the specimen obtained by transbronchial lung cryobiopsy in one patient revealed a mild degree of lymphocyte and eosinophil infiltration. Rather, the findings of acute lung injury such as an edematous thickening of the alveolar walls, and an accumulation of foamy degenerative macrophages in the alveolar lumina was prominent. A pulmonary alveolar proteinosis reaction was also observed. HP-pattern pneumonitis due to ALIS may pathologically correspond to acute lung injury and a pulmonary alveolar proteinosis reaction despite increasing serum eosinophil counts.

3.
Cureus ; 16(3): e56622, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38646349

RESUMEN

The increasing prevalence of Mycobacterium avium complex (MAC) pulmonary disease poses a significant therapeutic challenge, particularly due to the limited efficacy and systemic toxicity associated with conventional guideline-based therapy. Amikacin liposome inhalation suspension (ALIS) has been developed, yet its real-world application remains underreported. This retrospective analysis, conducted from March 2021 to February 2024, examined ALIS's clinical use in patients aged 20 years or older with refractory MAC pulmonary disease at our institution. The primary objective of this study is to describe the patient characteristics and clinical trajectories associated with the initiation of ALIS therapy in real-world settings for individuals diagnosed with MAC pulmonary disease. Of 11 patients initiated on ALIS, one was excluded due to financial constraints impacting continuation. The analysis proceeded with the remaining 10 subjects. The mean age of participants was 70.2 years, with a predominance of female patients (n = 7, 70%) and a higher incidence of M. avium infections (n = 6, 60%). Forty percent of the cohort (n = 4) had a history of ethambutol-induced optic neuritis leading to the cessation of the drug. The average interval from the initiation of guideline-based therapy to the start of ALIS was 8.5 ± 6.9 years (mean ± standard deviation). The majority (80%) presented with positive Gaffky scores at ALIS initiation, and a significant proportion exhibited resistance to clarithromycin and ethambutol. Comorbid conditions, including diabetes and previous cancer, were noted. The study also observed elevated anti-MAC antibody levels. Treatment duration varied, with fatigue leading to discontinuation in two cases. Treatment-emergent adverse events were documented in individual patients, each presenting with grade 1 severity: hemoptysis (n = 1, 10%), elevated creatinine levels (n = 1, 10%), and dysphonia (n = 2, 20%) were observed, respectively. Correlation analysis revealed a significant inverse relationship between body mass index (BMI) and ALIS discontinuation due to fatigue, and a positive correlation between Gaffky scores and C-reactive protein (CRP) levels. These results underscore the potential benefits and limitations of ALIS, suggesting that timely intervention and comprehensive healthcare support are crucial for optimal outcomes in the treatment of advanced MAC pulmonary disease.

4.
Inflammopharmacology ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662181

RESUMEN

The development of nanoparticles (NPs) with active components with upgraded stability, and prolonged release helps in enhanced tissue regeneration. In addition, NPs are feasible strategy to boost antibiotic effectiveness and reduce drug side effects. Our study focuses on the use of amikacin (AMK) and gamma amino butyric acid (GABA) unloaded combinations or loaded on chitosan nanoparticles (CSNPs) for kidney protection. The AMK-GABA-CSNPs were prepared with the ionic gelation method, the morphology was studied using transmission electron microscopy (TEM), zetasizer and the Fourier transform-infrared spectroscopy (FT-IR) spectrum of the synthesized NPs was observed. The average size of AMK-GABA-CSNPs was 77.5 ± 16.5 nm. Zeta potential was + 38.94 ± 2.65 mV. AMK-GABA-CSNPs revealed significant in vitro antioxidant, anti-coagulation, non-hemolytic properties and good cell compatibility. To compare the effects of the unloaded AMK-GABA combination and AMK-GABA-CSNPs on the renal tissue, 42 healthy Sprague-Dawley rats were divided into seven groups. G1: normal control (NC), normal saline; G2: low-dose nephrotoxic group (LDN), AMK (20 mg/kg/day; i.p.); G3: unloaded AMK (20 mg/kg/day; i.p.) and GABA (50 mg/kg/day; i.p.); G4: AMK-GABA-CSNPs (20 mg/kg/day; i.p.); G5: high-dose nephrotoxic group (HDN), AMK (30 mg/kg/day; i.p.); G6: unloaded AMK (30 mg/kg/day; i.p.) and GABA (50 mg/kg/day; i.p.) and G7: AMK-GABA-CSNPs (30 mg/kg/day; i.p.). The results showed that AMK-GABA-CSNPs formulation is superior to unloaded AMK-GABA combination as it ameliorated kidney functions, oxidative stress and displayed a significant homeostatic role via suppression of inflammatory cytokines of Th1, Th2 and Th17 types. Hence, AMK-GABA-CSNPs could afford a potential nano-based therapeutic formula for the management of AMK-nephrotoxicity.

6.
Microb Drug Resist ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38512170

RESUMEN

Klebsiella pneumoniae stands out as a major opportunistic pathogen responsible for both hospital- and community-acquired bacterial infections. This study comprehensively assesses the antibiotic resistance, amikacin persistent patterns, and biofilm-forming ability of 247 isolates of K. pneumoniae obtained from an intensive care unit of a tertiary hospital in Vietnam. Microdilution assays, conducted on a 96-well plate, determined the minimum inhibitory concentrations (MICs) of amikacin. Susceptibility data for other antibiotics were gathered from the antibiogram profile. Stationary-phase bacteria were exposed to 50 × MIC, and viable bacteria counts were measured to determine amikacin persistence. Biofilm forming capacity on 96-well polystyrene surfaces was assessed by biomass and viable bacteria. The prevalence of resistance was notably high across most antibiotics, with 64.8% classified as carbapenem-resistant K. pneumoniae and 81.4% as multidrug resistant. Amikacin, however, exhibited a relatively low rate of resistance. Of the isolates, 58.2% demonstrated a moderate to strong biofilm formation capacity, and these were found to be poorly responsive to amikacin. K. pneumoniae reveals a significant inclination for amikacin persistence, with ∼45% of isolates displaying an antibiotic antibiotic-survival ratio exceeding 10%. The study sheds light on challenges in treating of K. pneumoniae infection in Vietnam, encompassing a high prevalence of antibiotic resistance, a substantial ability to form biofilm, and a notable rate of antibiotic persistence.

7.
Int J Biol Macromol ; 266(Pt 1): 130947, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38521313

RESUMEN

Biomaterial-based drug-carrying systems have scored enormous focus in the biomedical sector. Poly(lactic acid) (PLA) is a versatile material in this context. A porous and hydrophilic PLA surface can do this job better. We aimed to synthesize pH-responsive PLA-based porous films for uptaking and releasing amikacin sulfate in the aqueous media. The native PLA lacks functional/polar sites for the said purpose. So, we tended to aminolyze it for tailored physicochemical and surface properties. The amino (-NH2) group density on the treated films was examined using the ninhydrin assay. Electron microscopic analyses indicated the retention of porous morphology after aminolysis. Surface wettability and FTIR results expressed that the resultant films became hydrophilic after aminolysis. The thermal analysis expressed reasonable thermal stability of the aminolyzed films. The prepared films expressed pH-responsive behaviour for loading and releasing amikacin sulfate drug at pH 5.5 and 7.4, respectively. The drug release data best-fitted the first-order kinetic model based on Akaike information and model selection criteria. The prepared PLA-based aminolyzed films qualified as potential candidates for pH-responsive drug delivery applications. This study could be the first report on pH-responsive amikacin sulfate uptake and release on the swellable aminolyzed PLA-based porous films for effective drug delivery application.

8.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38515285

RESUMEN

AIM: During liver transplantation, both hospital-acquired (HA) and community-acquired (CA) intra-abdominal infections (IAIs) are involved causing life-threatening diseases. Therefore, comparative studies of aerobic and facultative anaerobic HA-IAIs and CA-IAIs after liver transplantation surgery are necessary. METHODS AND RESULTS: The species of detected isolates (310) from intra-abdominal fluid were identified and classified into hospital-acquired intra-abdominal infections (HA-IAIs) and community-acquired intra-abdominal infections (CA-IAIs). Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii were the most commonly detected species. The resistant phenotypes were commonly detected among the HA-IAIs; however, the virulent phenotypes were the predominant strains of CA-IAIs. Regrettably, the resistance profiles were shocking, indicating the inefficacy of monotherapy in treating these isolates. Therefore, we confirmed the use of empirical combination therapies of amikacin and meropenem for treating all IAIs (FICI ≤ 0.5). Unfortunately, the high diversity and low clonality of all identified HA and CA-IAIs were announced with D-value in the range of 0.992-1. CONCLUSION: This diversity proves that there are infinite numbers of infection sources inside and outside healthcare centers.


Asunto(s)
Infecciones Comunitarias Adquiridas , Infección Hospitalaria , Infecciones Intraabdominales , Trasplante de Hígado , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones Intraabdominales/tratamiento farmacológico , Trasplante de Hígado/efectos adversos , Infección Hospitalaria/tratamiento farmacológico , Infecciones Comunitarias Adquiridas/tratamiento farmacológico , Escherichia coli/genética , Fenotipo , Hospitales , Hígado , Pruebas de Sensibilidad Microbiana
9.
Int J Pharm ; 656: 124056, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38548072

RESUMEN

Bacterial corneal keratitis is a damage to the corneal tissue that if not treated, can cause various complications like severe vision loss or even blindness. Combination therapy with two antibiotics which are effective against Gram-positive and Gram-negative bacteria offers sufficient broad-spectrum antibiotic coverage for the treatment of keratitis. Nanofibers can be a potential carrier in dual drug delivery due to their structural characteristics, specific surface area and high porosity. In order to achieve a sustained delivery of amikacin (AMK) and vancomycin (VAN), the current study designed, assessed, and compared nanofibrous inserts utilizing polyvinyl alcohol (PVA) and polycaprolactone (PCL) as biocompatible polymers. Electrospinning method was utilized to prepare two different formulations, PVA-VAN/AMK and PCL/PVA-VAN/AMK, with 351.8 ± 53.59 nm and 383.85 ± 49 nm diameters, respectively. The nanofibers were simply inserted in the cul-de-sac as a noninvasive approach for in vivo studies. The data obtained from the physicochemical and mechanical properties studies confirmed the suitability of the formulations. Antimicrobial investigations showed the antibacterial properties of synthesized nanofibers against Staphylococcus aureus and Pseudomonas aeruginosa. Both in vitro and animal studies demonstrated sustained drug release of the prepared nanofibers for 120 h. Based on the in vivo findings, the prepared nanofibers' AUC0-120 was found to be 20 to 31 times greater than the VAN and AMK solutions. Considering the results, the nanofibrous inserts can be utilized as an effective and safe system in drug delivery.

10.
mSphere ; 9(3): e0078923, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38353533

RESUMEN

Aminoglycosides are essential components in the available armamentarium to treat bacterial infections. The surge and rapid dissemination of resistance genes strongly reduce their efficiency, compromising public health. Among the multitude of modifying enzymes that confer resistance to aminoglycosides, the aminoglycoside 6'-N-acetyltransferase type Ib [AAC(6')-Ib] is the most prevalent and relevant in the clinical setting as it can inactivate numerous aminoglycosides, such as amikacin. Although the mechanism of action, structure, and biochemical properties of the AAC(6')-Ib protein have been extensively studied, the contribution of the intracellular milieu to its activity remains unclear. In this work, we used a fluorescent-based system to quantify the number of AAC(6')-Ib per cell in Escherichia coli, and we modulated this copy number with the CRISPR interference method. These tools were then used to correlate enzyme concentrations with amikacin resistance levels. Our results show that resistance to amikacin increases linearly with a higher concentration of AAC(6')-Ib until it reaches a plateau at a specific protein concentration. In vivo imaging of this protein shows that it diffuses freely within the cytoplasm of the cell, but it tends to form inclusion bodies at higher concentrations in rich culture media. Addition of a chelating agent completely dissolves these aggregates and partially prevents the plateau in the resistance level, suggesting that AAC(6')-Ib aggregation lowers resistance to amikacin. These results provide the first step in understanding the cellular impact of each AAC(6')-Ib molecule on aminoglycoside resistance. They also highlight the importance of studying its dynamic behavior within the cell.IMPORTANCEAntibiotic resistance is a growing threat to human health. Understanding antibiotic resistance mechanisms can serve as foundation for developing innovative treatment strategies to counter this threat. While numerous studies clarified the genetics and dissemination of resistance genes and explored biochemical and structural features of resistance enzymes, their molecular dynamics and individual contribution to resistance within the cellular context remain unknown. Here, we examined this relationship modulating expression levels of aminoglycoside 6'-N-acetyltransferase type Ib, an enzyme of clinical relevance. We show a linear correlation between copy number of the enzyme per cell and amikacin resistance levels up to a threshold where resistance plateaus. We propose that at concentrations below the threshold, the enzyme diffuses freely in the cytoplasm but aggregates at the cell poles at concentrations over the threshold. This research opens promising avenues for studying enzyme solubility's impact on resistance, creating opportunities for future approaches to counter resistance.


Asunto(s)
Amicacina , Antibacterianos , Humanos , Amicacina/farmacología , Antibacterianos/farmacología , Aminoglicósidos/farmacología , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Escherichia coli
11.
Br J Clin Pharmacol ; 90(4): 1173-1182, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38304967

RESUMEN

AIMS: Amikacin requires therapeutic drug monitoring for optimum efficacy; however, the optimal model-informed precision dosing strategy for the area under the concentration-time curve (AUC) of amikacin is uncertain. This simulation study aimed to determine the efficient blood sampling points using the Bayesian forecasting approach for early achievement of the target AUC range for amikacin in critically ill patients. METHODS: We generated a virtual population of 3000 individuals using 2 validated population pharmacokinetic models identified using a systematic literature search. AUC for each blood sampling point was evaluated using the probability of achieving a ratio of estimated/reference AUC at steady state in the 0.8-1.2 range. RESULTS: On day 1, the 1-point samplings for population pharmacokinetic models showed a priori probabilities of 26.3 and 45.6%, which increased to 47.3 and 94.4% at 23 and 15 h, respectively. Using 2-point sampling at the peak (3 and 4 h) and trough (24 h) on day 1, these probabilities further increased to 72.3 and 99.5%, respectively. These probabilities were comparable on days 2 and 3, regardless of 3 and 6 sampling points or estimated glomerular filtration rate. These results indicated the higher predictive accuracy of 2-point sampling than 1-point sampling on day 1 for amikacin AUC estimation. Moreover, 2-point sampling was a more reasonable approach than rich sampling. CONCLUSIONS: This study contributes to the development of an efficient model-informed precision dosing strategy for early targeting of amikacin AUC in critically ill patients.


Asunto(s)
Amicacina , Enfermedad Crítica , Humanos , Amicacina/farmacocinética , Amicacina/uso terapéutico , Teorema de Bayes , Enfermedad Crítica/terapia , Simulación por Computador , Factores de Tiempo , Área Bajo la Curva , Antibacterianos
12.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38397035

RESUMEN

Immunosuppression management in transplant recipients is a critical component of pharmacotherapy. This becomes particularly crucial when patients are exposed to multiple medications that may lead to pharmacological interactions, potentially compromising the effectiveness of immunosuppression. We present the case of a 46-year-old patient diagnosed with cystic fibrosis in childhood at our hospital, who underwent bilateral lung transplantation and is undergoing immunosuppressive therapy. The patient was hospitalized due to an acute pulmonary exacerbation. During the hospitalization, the patient was administered various classes of antibiotics while continuing the standard antirejection regimen of everolimus and mycophenolate. Plasma concentrations of immunosuppressants, measured after antibiotic therapy, revealed significantly lower levels than the therapeutic thresholds, providing the basis for formulating the hypothesis of a drug-drug interaction phenomenon. This hypothesis is supported by the rationale of antibiotic-induced disruption of the intestinal flora, which directly affects the kinetics of mycophenolate. These levels increased after discontinuation of the antimicrobials. Patients with CF undergoing lung transplantation, especially prone to pulmonary infections due to their medical condition, considering the enterohepatic circulation of mycophenolate mediated by intestinal bacteria, necessitate routine monitoring of mycophenolate concentrations during and immediately following the cessation of antibiotic therapies, that could potentially result in insufficient immunosuppression.


Asunto(s)
Fibrosis Quística , Trasplante de Pulmón , Humanos , Persona de Mediana Edad , Ácido Micofenólico/uso terapéutico , Ácido Micofenólico/farmacología , Fibrosis Quística/complicaciones , Fibrosis Quística/tratamiento farmacológico , Antibacterianos/uso terapéutico , Inmunosupresores/efectos adversos , Inhibidores Enzimáticos
13.
Cureus ; 16(1): e53035, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38410293

RESUMEN

Nocardia is a type of bacteria that can cause infections in both immunocompromised and immunocompetent hosts. It is an obligate aerobe and is commonly found in the environment. Pulmonary nocardiosis may present as pneumonia, endobronchial inflammatory masses, lung abscess, and cavitary disease with contiguous extension, leading to effusion and empyema. We present a case of pulmonary nocardiosis in a 75-year-old male patient with type 2 diabetes mellitus. The patient presented with bilateral pneumonia and hypoxia with an oxygen saturation of 85%. Sputum samples were sent to the microbiology laboratory for testing. Acid-fast staining with 1% H2SO4 showed acid-fast branching filamentous rods, but Nocardia could not be isolated in culture. The sample was subjected to 16S rRNA gene sequencing, which identified the pathogen as Nocardia wallacei. The culture of the sputum did not grow any pathogenic organisms, and the blood culture was sterile. Unfortunately, the patient left the hospital against medical advice as he was advised for intubation. The patient could not survive and died the next day after leaving the hospital. N. wallacei can be fatal and cause disseminated infection in both immunosuppressed and immunocompetent patients. Only eight case reports of N. wallacei have been reported in the literature from various parts of the world. Our case is the first case report of N. wallacei from India.

14.
Tuberculosis (Edinb) ; 146: 102482, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38364332

RESUMEN

Mycobacteroides abscessus (Mab, also known as Mycobacterium abscessus) causes opportunistic pulmonary and soft tissue infections that are difficult to cure with existing treatments. Omadacycline, a new tetracycline antibiotic, exhibits potent in vitro and in vivo activity against Mab. As regimens containing multiple antibiotics are required to produce a durable cure for Mab disease, we assessed efficacies of three three-drug combinations in a pre-clinical mouse model of pulmonary Mab disease to identify companion drugs with which omadacycline exhibits the highest efficacy. Additionally, we assessed the susceptibility of Mab recovered from mouse lungs after four weeks of exposure to the three triple-drug regimens. Among the three-drug regimens, omadacycline + imipenem + amikacin produced the largest reduction in Mab burden, whereas omadacycline + imipenem + linezolid exhibited the most effective early bactericidal activity. Omadacycline + linezolid + clofazimine, a regimen that can be administered orally, lacked early bactericidal activity but produced a gradual reduction in the lung Mab burden over time. The robust efficacy exhibited by these three regimens in the mouse model supports their further evaluation in patients with Mab lung disease. As we were unable to isolate drug-resistant Mab mutants at the completion of four weeks of treatment, these triple-drug combinations show promise of producing durable cure and minimizing selection of resistant mutants.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Mycobacterium tuberculosis , Humanos , Animales , Ratones , Linezolid/farmacología , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Tetraciclinas/farmacología , Tetraciclinas/uso terapéutico , Imipenem/farmacología , Combinación de Medicamentos , Pruebas de Sensibilidad Microbiana
15.
Cureus ; 16(1): e52071, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38344492

RESUMEN

Nocardiosis is known as an opportunistic infection in immunocompromised hosts. We present to you a case of pleural nocardiosis in a 38-year-old male patient who was a chronic smoker and presented with a left-sided pleural effusion. He was a known case of thrombocytopenia due to immune thrombocytopenia (ITP) and was on steroid therapy. On admission, he was found to be positive for HIV. Pleural fluid was sent to microbiology, where acid-fast staining with 1% sulfuric acid (H2SO4)showed acid-fast branching filamentous rods and cultures grew Nocardia, which was resistant to ampicillin, ceftriaxone, imipenem, cotrimoxazole, erythromycin, tetracycline, and susceptible to amikacin, linezolid, and levofloxacin. The isolate was identified as Nocardia otitidiscaviarum using 16S rRNA gene sequencing. Culture from the chest wall drain grew Escherichia coli and Stenotrophomonas maltophilia. Subsequently, the patient developed sepsis, and paired blood cultures grew Candida guilliermondii. Unfortunately, the patient could not survive despite aggressive efforts and died after 40 days of admission.

16.
J Chemother ; : 1-9, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38339845

RESUMEN

Nosocomial infections with drug resistant bacteria impact morbidity and mortality, length of therapy and stay and the overall cost of treatment. Key pathogens with ventilator associated pneumonia may be drug-susceptible or multi-drug resistant and inhaled amikacin has been investigated as an adjunctive therapy option. High pulmonary drug concentrations (epithelial lining fluid [ELF]) along with minimal systemic toxicity is seen as an advantage to inhaled formulations. In vitro killing of bacteria using clinically relevant drug concentrations provide insight on bug-drug interactions. The aim of this study was to measure killing of clinical isolates of Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus and methicillin-susceptible S. aureus using the minimum inhibitory concentration (MIC), mutant prevention concentration (MPC) and median (976 µg/ml) ELF drug concentration for amikacin. Overall killing took longer at the MIC drug concentration and was inconsistent amongst the pathogens tested with the percentage of bacteria killed following 180 min of drug exposure ranging from growth in the presence of the drug to 95% kill. At the MPC drug concentrations, killing ranged from 55-88% for all pathogens following 30 min of drug exposure and increased to 99-100% following 180 min of drug exposure. At the ELF amikacin tested, killing was 81-100% following 20 min and 94-100% by 30 min of drug exposure. Rapid killing against MDR respiratory pathogens by amikacin ELF drug concentrations is encouraging.

17.
J Chemother ; : 1-5, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38372170

RESUMEN

The rise in ESBL-producing and carbapenem-resistant Gram-negative bacterial infections is alarming. Aminoglycosides remain attractive for treating urinary tract infections (UTIs). However, aminoglycosides-associated acute kidney injury (AKI) raises concerns, especially in patients with underlying renal impairment. We conducted a retrospective cohort study to evaluate the risk of AKI in patients with UTI empirically treated with amikacin. Among 395 patients (median age 41.9 years [IQR 28.3-67.1], 342 [86.6%] female), 162 (41.0%) received amikacin and 233 (59.0%) were empirically treated with other antibiotics. AKI incidence was low (5.6%) and not associated with amikacin exposure (OR 0.56, 95% CI 0.22-1.43, p = 0.23), even in those with pre-existing renal impairment or AKI on admission. The clinical outcomes (including cure by the third day, AKI, maximal creatinine, length of stay, mortality, and readmission) did not differ between the groups. Once-daily amikacin may offer a safe UTI treatment option amid increasing multi-drug resistance.

18.
Int J Antimicrob Agents ; 63(2): 107089, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38218322

RESUMEN

OBJECTIVES: Aminoglycoside resistance in bacteria is typically conferred by specific drug-modifying enzymes. Infrequently, such resistance is achieved through 16S ribosomal RNA methyltransferases, such as NpmA and KamB encoded by Escherichia coli and Streptoalloteichus tenebrarius, respectively. These enzymes are not widespread and have not been described in Nocardia species to date. METHODS: We report the genomic mining of 18 Nocardia wallacei isolates that were found to be specifically and substantially resistant to amikacin. RESULTS: We identified a gene coding for a protein with very distant homology to NpmA and KamB. However, 3-D modeling revealed that the tertiary structure of these three proteins was highly similar. Cloning and expressing this gene in two susceptible bacteria Nocardia asteroides, and Mycobacterium smegmatis (another Actinobacterium) led to high-level, pan-aminoglycoside resistance in both cases. We named this gene warA (Wallacei Amikacin Resistance A). CONCLUSIONS: This is the first description and experimental characterization of a gene of this family in Nocardia, and the first demonstration that such activity could lead to pan-aminoglycoside resistance in Mycobacteria as well. The discovery of this novel gene has important biotechnology and clinical implications.


Asunto(s)
Mycobacterium , Nocardia , Aminoglicósidos/metabolismo , Amicacina/farmacología , Antibacterianos/farmacología , Antibacterianos/metabolismo , Nocardia/genética , Nocardia/metabolismo , Escherichia coli/genética , Mycobacterium/genética , Mycobacterium/metabolismo , ARN Ribosómico 16S/genética , Farmacorresistencia Bacteriana/genética
19.
BMC Res Notes ; 17(1): 38, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273327

RESUMEN

OBJECTIVES: Urinary tract infections (UTIs) are very common infections in humans, and Escherichia coli (E. coli) is the commonest pathogen leading to UTIs. The generation of beta-lactamase enzymes in this bacterium results in its resistance against many antibiotics. This study compares three doses of amikacin on alternate days with a daily dose of meropenem in the same period for the treatment of UTIs with E. coli in a double-blind clinical trial. METHODS: The current double-blind clinical trial compares three doses of amikacin on alternate days with a daily dose of meropenem in the same period for the treatment of UTIs with E. coli. The patients were assigned to two groups: Intervention (receiving a single dose of amikacin once a day at 48-h intervals for a week, three doses) and control (receiving meropenem for 1/TDS for a week). RESULTS: The E. coli infection frequency was 61 (21 cases of non-ESBL and 40 cases of ESBL-positive infections) and the frequency of the other infections was 52 (46%). In the patients with ESBL E. coli infection, ciprofloxacin (21; 70%) showed the highest antibiotic resistance, and nitrofurantoin (33; 91.7%) showed the highest sensitivity. The baseline variables between the control and intervention groups indicated no significant difference (p > 0.05). The frequency of signs and symptoms showed no significant difference between the amikacin and meropenem groups in the first 24 h and the first week. In the second week of follow-up, no clinical signs or symptoms were observed in the two groups. CONCLUSION: The results of this study showed that treatment with amikacin, 1 g q48h, for one week (three doses) has the same result as meropenem, 1 g q8h, for one week (21 doses). The results are the same for the treatment of UTIs with ESBL positive and ESBL negative. Amikacin can be used once every 48 h to treat UTIs, is less expensive and can be administered on an outpatient basis. TRIAL REGISTRATION: This study was registered in the Iranian Registry of Clinical Trials (IRCT) with ID number: IRCT20170417033483N2 on the date 2018-02-13.


Asunto(s)
Infecciones por Escherichia coli , Infecciones Urinarias , Humanos , Amicacina/administración & dosificación , Antibacterianos/administración & dosificación , beta-Lactamasas , Método Doble Ciego , Escherichia coli , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Irán , Meropenem/administración & dosificación , Pruebas de Sensibilidad Microbiana , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/microbiología
20.
Microbiol Spectr ; 12(2): e0322223, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38236037

RESUMEN

Mycobacterium abscessus pulmonary disease is increasing in prevalence globally, particularly for individuals with cystic fibrosis. These infections are challenging to treat due to a high rate of resistance. Amikacin is critical to treatment, but the development of toxicity, amikacin resistance, and treatment failure are significant challenges. Amikacin has been characterized previously as peak-dependent and extended-interval dosing is commonly used. In our hollow fiber infection model of M. abscessus, amikacin exhibited time-dependent rather than the expected peak-dependent pharmacodynamics. Humanized amikacin exposures with more frequent, short-interval dosing (continuous infusion or every 12 hours) yielded improved microbiological response compared to extended-interval dosing (every 24 hours or 1-3 times per week). Short-interval dosing inhibited growth with a mean (SD) maximum Δlog10 colony forming units of -4.06 (0.52), significantly more than extended-interval dosing (P = 0.0013) every 24 hours, -2.40 (0.58), or 1-3 times per week, -2.39 (0.38). Growth recovery, an indicator of resistance emergence, occurred at 6.56 (0.70) days with short-interval dosing but was significantly earlier with extended-interval dosing (P = 0.0032) every 24 hours, 3.88 (0.85) days, and 1-3 times per week, 3.27 (1.72) days. Microbiological response correlated best with the pharmacodynamic index of %T > minimum inhibitory concentration (MIC), with an EC80 for growth inhibition of ~40%T > MIC. We used a previously published population model of amikacin to determine the probability of achieving 40%T > MIC and show that current dosing strategies are far below this target, which may partially explain why treatment failure remains so high for these infections. These data support a cautious approach to infrequent amikacin dosing for the treatment of M. abscessus.IMPORTANCEPulmonary disease caused by Mycobacterium abscessus complex (MABSC) is increasing worldwide, particularly in patients with cystic fibrosis. MABSC is challenging to treat due to high levels of antibiotic resistance. Treatment requires 2-4 antibiotics over more than 12 months and has a significant risk of toxicity but still fails to eradicate infection in over 50% of patients with cystic fibrosis. Antibiotic dosing strategies have been largely informed by common bacteria such as Pseudomonas aeruginosa. The "pharmacodynamic" effects of amikacin, a backbone of MABSC treatment, were thought to be related to maximum "peak" drug concentration, leading to daily or three times weekly dosing. However, we found that amikacin MABSC kill and growth recovery, an indicator of antibiotic resistance, are dependent on how long amikacin concentrations are above the minimum inhibitory concentration, not how high the peak concentration is. Therefore, we recommend a re-evaluation of amikacin dosing to determine if increased frequency can improve efficacy.


Asunto(s)
Fibrosis Quística , Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Humanos , Amicacina , Fibrosis Quística/microbiología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...